
Basics of Transaction Management

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• Transactions, Recovery and Concurrency Control

• Transactions and Transaction Management

• Recovery

• Concurrency Control

• The ACID Properties of Transactions

2

Transactions, Recovery and Concurrency control

• Majority of databases are multi user databases

• Concurrent access to the same data may induce
different types of anomalies

• Errors may occur in the DBMS or its environment

• DBMS must support ACID (Atomicity, Consistency,
Isolation, Durability) properties

3

Transactions, Recovery and Concurrency Control

• Transaction: set of database operations induced
by a single user or application, that should be
considered as one undividable unit of work

– E.g., transfer between two bank accounts of the same
customer

• Transaction always ‘succeeds’ or ‘fails’ in its
entirety

• Transaction renders database from one consistent
state into another consistent state

4

Transactions, Recovery and Concurrency Control

• Examples of problems: hard disk failure,
application/DBMS crash, division by 0, …

• Recovery: activity of ensuring that, whichever of the
problems occurred, the database is returned to a
consistent state without any data loss afterwards

• Concurrency control: coordination of transactions
that execute simultaneously on the same data so that
they do not cause inconsistencies in the data because
of mutual interference

5

Transactions and Transaction Management

• Delineating transactions and the transaction
lifecycle

• DBMS components involved in transaction
management

• Logfile

6

Delineating Transactions and the Transaction Lifecycle

• Transactions boundaries can be specified implicitly
or explicitly

– Explicitly: begin_transaction and
end_transaction

– Implicitly: first executable SQL statement

• Once the first operation is executed, the
transaction is active

• If transaction completed successfully, it can be
committed. If not, it needs to be rolled back.

7

Delineating Transactions and the Transaction Lifecycle

<begin_transaction>

UPDATE account

SET balance = balance - :amount

WHERE accountnumber = :account_to_debit

UPDATE account

SET balance = balance + :amount

WHERE accountnumber = :account_to_credit

<end_transaction>
8

DBMS Components Involved in Transaction Management

9

 Tfurther operations 3 Transaction manager

 input Tn, Tn-1, ..., T1, T0 input area

 1 scheduler

 Tstarted Tactive

 2 Tterminated Tcompleted 4

 5a 5b

 Output area

 not ok ok

 Tunsuccessful Tsuccessful

 5b1 5b2

 abort commit

 5a 5b1 5b2

 recovery stored buffer

 manager datamanager manager

 database

Logfile

• Logfile registers

– a unique log sequence number

– a unique transaction identifier

– a marking to denote the start of a transaction, along with the
transaction’s start time and indication whether the transaction is
read only or read/write

– identifiers of the database records involved in the transaction, as
well as the operation(s) they were subjected to

– before images of all records that participated in the transaction

– after images of all records that were changed by the transaction

– the current state of the transaction (active, committed or aborted)

10

Logfile

• Logfile may also contain checkpoints

– moments when buffered updates by active
transactions, as present in the database buffer, are
written to disk at once

• Write ahead log strategy

– all updates are registered on the logfile before written
to disk

– before images are always recorded on the logfile prior
to the actual values being overwritten in the physical
database files

11

Recovery

• Types of Failures

• System Recovery

• Media Recovery

12

Types of Failures

• Transaction failure results from an error in
the logic that drives the transaction’s
operations and/or in the application logic

• System failure occurs if the operating system
or the database system crashes

• Media failure occurs if the secondary
storage is damaged or inaccessible

13

System Recovery

• In case of system failure, 2 types of transactions

– already reached the committed state before failure

– still in an active state

• Logfile is essential to take account of which updates
were made by which transactions (and when) and to
keep track of before images and after images needed
for the UNDO and REDO

• Database buffer flushing strategy has impact on
UNDO and REDO

14

System Recovery

15

Note 1: checkpoint denotes moment the buffer manager last ‘flushed’ the database

buffer to disk!

Note 2: similar reasoning can be applied in case of transaction failure (e.g. T3, T5)

Media Recovery

• Media recovery is invariably based on some type
of data redundancy

– Stored on offline (e.g., a tape vault) or online media
(e.g., online backup hard disk drive)

• Tradeoff between cost to maintain the redundant
data and time needed to restore the system

• Two types: disk mirroring and archiving

16

Media Recovery

• Disk mirroring

– a (near) real time approach that writes the same data
simultaneously to 2 or more physical disks

– limited failover time but often costlier than archiving

– (limited) negative impact on write performance but
opportunities for parallel read access

• Archiving

– database files are periodically copied to other storage media
(e.g. tape, hard disk)

– trade-off between cost of more frequent backups and cost of
lost data

– full versus incremental backup
17

Media Recovery

• Mixed approach: rollfoward recovery

– Archive database files and mirror logfile such that the
backup data can be complemented with (a redo of) the
more recent transactions as recorded in the logfile

• Note: NoSQL databases allow for temporary
inconsistency, in return for increased performance
(eventual consistency)

18

Concurrency Control

• Typical Concurrency Problems

• Schedules and Serial Schedules

• Serializable Schedules

• Optimistic and Pessimistic Schedulers

• Locking and Locking Protocols

19

Typical Concurrency Problems

• Scheduler is responsible for planning the
execution of transactions and their operations

• Simple serial execution would be very inefficient

• Scheduler will ensure that operations of the
transactions can be executed in an interleaved
way

• Interference problems could occur

– lost update problem

– uncommitted dependency problem

– inconsistent analysis problem 20

Typical Concurrency Problems

• Lost update problem occurs if an otherwise successful
update of a data item by a transaction is overwritten by
another transaction that wasn’t ‘aware’ of the first update

21

 time T1 T2 amountx

 t1 begin transaction 100
 t2 begin transaction read(amountx) 100
 t3 read(amountx) amountx = amountx + 120 100
 t4 amountx = amountx - 50 write(amountx) 220
 t5 write(amountx) commit 50
 t6 commit 50

Typical Concurrency Problems
• If a transaction reads one or more data items that are

being updated by another, as yet uncommitted,
transaction, we may run into the uncommitted
dependency (a.k.a. dirty read) problem

22

 time T1 T2 amountx

 t1 begin transaction 100
 t2 read(amountx) 100
 t3 amountx = amountx + 120 100
 t4 begin transaction write(amountx) 220
 t5 read(amountx) 220
 t6 amountx = amountx – 50 rollback 100
 t7 write(amountx) 170
 t8 commit 170

Typical Concurrency Problems

• The inconsistent analysis problem denotes a situation where a
transaction reads partial results of another transaction that
simultaneously interacts with (and updates) the same data items.

23

 time T1 T2 amountx y z sum

 t1 begin transaction 100 75 60
 t2 begin transaction sum = 0 100 75 60 0
 t3 read(amountx) read(amountx) 100 75 60 0
 t4 amountx = amountx – 50 sum = sum + amountx 100 75 60 100
 t5 write(amountx) read(amounty) 50 75 60 100
 t6 read(amountz) sum = sum + amounty 50 75 60 175
 t7 amountz = amountz + 50 50 75 60 175
 t8 write(amountz) 50 75 110 175
 t9 commit read(amountz) 50 75 110 175
 t10 sum = sum + amountz 50 75 110 285
 t11 commit 50 75 110 285

Typical Concurrency Problems

• Other concurrency related problems

– nonrepeatable read (unrepeatable read) occurs when
a transaction T1 reads the same row multiple times,
but obtains different subsequent values, because
another transaction T2 updated this row in the
meantime

– phantom reads can occur when a transaction T2 is
executing insert or delete operations on a set of rows
that are being read by a transaction T1

24

Schedules and Serial Schedules

• A schedule S is a set of n transactions, and a sequential
ordering over the statements of these transactions, for
which the following property holds:
“For each transaction T that participates in a schedule S
and for all statements si and sj that belong to the same
transaction T: if statement si precedes statement sj in T,
then si is scheduled to be executed before sj in S.”

• Schedule preserves the ordering of the individual
statements within each transaction but allows an
arbitrary ordering of statements between transactions

25

Schedules and Serial Schedules

• Schedule S is serial if all statements si of the
same transaction T are scheduled
consecutively, without any interleave with
statements from a different transaction

• Serial schedules prevent parallel transaction
execution

• We need a non-serial, correct schedule!

26

Serializable Schedules

• A serializable schedule is a non-serial schedule which is
equivalent to a serial schedule

• 2 schedules S1 and S2 (with the same transactions T1, T2, ..., Tn) are
equivalent if

– For each operation readx of Ti in S1 the following holds: if a value x
that is read by this operation, was last written by an operation
writex of a transaction Tj in S1, then that same operation readx of Ti

in S2 should read the value of x, as written by the same operation
writex of Tj in S2

– For each value x that is affected by a write operation in these
schedules, the last write operation writex in schedule S1, as executed
as part of transaction Ti, should also be the last write operation on x
in schedule S2, again as part of transaction Ti. 27

Serializable Schedules

28

Serializable Schedules

• A precedence graph can be drawn to test a schedule for
serializability

– create a node for each transaction Ti

– create a directed edge Ti  Tj if Tj reads a value after it was
written by Ti

– create a directed edge Ti  Tj if Tj writes a value after it was read
by Ti

– create a directed edge Ti  Tj if Tj writes a value after it was
written by Ti

• If precedence graph contains a cycle, the schedule is not
serializable.

– E.g., in the previous example, S2 contains a cycle
29

Optimistic and Pessimistic Schedulers
• Scheduler applies scheduling protocol

• Optimistic protocol

– conflicts between simultaneous transactions are exceptional

– transaction’s operations are scheduled without delay

– when transaction is ready to commit, it is verified for conflicts

– if no conflicts, transaction is committed. Otherwise, rolled back.

• Pessimistic protocol

– it is likely that transactions will interfere and cause conflicts

– execution of transaction’s operations delayed until scheduler can
schedule them in such a way that chance of conflicts is minimized

– will reduce the throughput to some extent

– E.g., a serial scheduler 30

Optimistic and Pessimistic Schedulers

• Locking can be used for optimistic and pessimistic
scheduling

– Pessimistic scheduling: locking used to limit the simultaneity of
transaction execution

– Optimistic scheduling: locks used to detect conflicts during
transaction execution

• Timestamping

– Read and write timestamps are attributes associated with a
database object

– Timestamps are used to enforce that a set of transactions’
operations is executed in the appropriate order

31

Locking and Locking Protocols

• Purposes of Locking

• Two-Phase Locking Protocol (2PL)

• Cascading Rollbacks

• Dealing with Deadlocks

• Isolation Levels

• Lock Granularity

32

Purposes of Locking

• Purpose of locking is to ensure that, in situations where
different concurrent transactions attempt to access the
same database object, access is only granted in such a
way that no conflicts can occur

• A lock is a variable that is associated with a database
object, where the variable’s value constrains the types of
operations that are allowed to be executed on the object
at that time

• Lock manager is responsible for granting locks (locking)
and releasing locks (unlocking) by applying a locking
protocol

33

Purposes of Locking

• An exclusive lock (x-lock or write lock) means that a
single transaction acquires the sole privilege to
interact with that specific database object at that
time

– no other transactions are allowed to read or write it

• A shared lock (s-lock or read lock) guarantees that
no other transactions will update that same object
for as long as the lock is held

– other transactions may hold a shared lock on that same
object as well, however they are only allowed to read it

34

Purposes of Locking

• If a transaction wants to update an object, an
exclusive lock is required

– only acquired if no other transactions hold any lock on
the object

• Compatibility matrix

35

 Type of lock(s) currently held on object

 unlocked shared exclusive

Type of lock unlock - yes yes
requested shared yes yes no
 exclusive yes no no

Purposes of Locking

• Lock manager implements locking protocol

– set of rules to determine what locks can be granted in
what situation (based on e.g. compatibility matrix)

• Lock manager also uses a lock table

– which locks are currently held by which transaction,
which transactions are waiting to acquire certain locks,
etc.

• Lock manager needs to ensure ‘fairness’ of
transaction scheduling to, e.g., avoid starvation

36

Two-Phase Locking Protocol (2PL)

• 2PL locking protocol works as follows:

1. Before a transaction can read (update) a database
object, it should acquire a shared (exclusive) lock on
that object

2. Lock manager determines if requested locks can be
granted, based on compatibility matri

3. Acquiring and releasing locks occurs in 2 phases

• growth phase: locks can be acquired but no locks can be
released

• shrink phase: locks are gradually released, and no additional
locks can be acquired

37

Two-Phase Locking Protocol (2PL)

• Variants

– Rigorous 2PL: transaction holds all its locks until it is
committed

– Static 2PL (Conservative 2PL): transaction acquires all
its locks right at the start of the transaction

38

Two-Phase Locking Protocol (2PL)

39

 # locks

 held by T (a) 2PL

 processing of T

 growth phase shrink phase

 (b) Rigorous 2PL

 (c) Static 2PL

Two-Phase Locking Protocol (2PL)

• Lost update problem with locking

40

 time T1 T2 amountx

 t1 begin transaction 100
 t2 begin transaction x-lock(amountx) 100
 t3 x-lock(amountx) read(amountx) 100
 t4 wait amountx = amountx + 120 100
 t5 wait write(amountx) 220
 t6 wait commit 220
 t7 wait unlock(amountx) 220
 t8 read(amountx) 220
 t9 amountx = amountx - 50 220
 t10 write(amountx) 170
 t11 commit 170
 t12 unlock(amountx) 170

Two-Phase Locking Protocol (2PL)

• Uncommitted dependency problem with locking

41

 time T1 T2 amountx

 t1 begin transaction 100
 t2 x-lock(amountx) 100
 t3 read(amountx) 100
 t4 begin transaction amountx = amountx + 120 100
 t5 x-lock(amountx) write(amountx) 220
 t6 wait rollback 100
 t7 wait unlock(amountx) 100
 t8 read(amountx) 100
 t9 amountx = amountx - 50 100
 t10 write(amountx) 50
 t11 commit 50
 t12 unlock(amountx) 50

Cascading Rollback

• Revisit the uncommitted dependency problem

– problem is resolved if T2 holds all its locks until it is rolled back

– with 2PL protocol, locks can already be released before the
transaction commits or aborts (shrink phase)

42

 time T1 T2 amountx

 t1 begin transaction 100
 t2 x-lock(amountx) 100
 t3 read(amountx) 100
 t4 begin transaction amountx = amountx + 120 100
 t5 x-lock(amountx) write(amountx) 220
 t6 wait unlock(amountx) 220
 t7 read(amountx) 220
 t8 amountx = amountx - 50 rollback 220
 t9 write(amountx) 170
 t10 commit 170
 t11 unlock(amountx) 170
 t12

Cascading Rollback

• Before transaction T1 can be committed, the DBMS should ensure
that all transactions that made changes to data items that were
subsequently read by T1 are committed first

• If transaction T2 is rolled back, all uncommitted transactions Tu that
have read values written by T2 need to be rolled back

• All transactions that have in their turn read values written by the
transactions Tu need to be rolled back as well, and so forth

• Cascading rollbacks should be applied recursively

– can be time-consuming

– best way to avoid this, is for all transactions to hold their locks until
they have reached the ‘committed’ state (e.g., rigorous 2PL)

43

Dealing with Deadlocks

• A deadlock occurs if 2 or more transactions are
waiting for one another’s’ locks to be released

• Example

44

 time T1 T2

 t1 begin transaction
 t2 x-lock(amountx) begin transaction
 t3 read(amountx) x-lock(amounty)
 t4 amountx = amountx - 50 read(amounty)
 t5 write(amountx) amounty = amounty - 30
 t6 x-lock(amounty) write(amounty)
 t7 wait x-lock(amountx)
 t8 wait wait

Dealing with Deadlocks

• Deadlock prevention can be achieved by static 2PL

– transaction must acquire all its locks upon the start

• Detection and resolution

– wait for graph consisting of nodes representing active
transactions and directed edges Ti  Tj for each
transaction Ti that is waiting to acquire a lock currently
held by transaction Tj

– deadlock exists if the wait for graph contains a cycle

– victim selection

45

Isolation Levels

• Level of transaction isolation offered by 2PL may be too
stringent

• Limited amount of interference may be acceptable for
better throughput

• Long-term lock is granted and released according to a
protocol, and is held for a longer time, until the transaction
is committed

• A short-term lock is only held during the time interval
needed to complete the associated operation

– use of short-term locks violates rule 3 of the 2PL protocol

– can be used to improve throughput!
46

Isolation Levels

• Isolation levels
– Read uncommitted is the lowest isolation level. Long-term locks are

not taken into account; it is assumed that concurrency conflicts do not
occur or simply that their impact on the transactions with this
isolation level are not problematic. This isolation level is typically only
allowed for read-only transactions, which do not perform updates
anyway.

– Read committed uses long-term write locks, but short-term read
locks. In this way, a transaction is guaranteed not to read any data
that are still being updated by a yet uncommitted transaction. This
resolves the lost update as well as the uncommitted dependency
problem. However, the inconsistent analysis problem may still occur
with this isolation level, as well as nonrepeatable reads and phantom
reads.

47

Isolation Levels

• Isolation levels (contd.)
– Repeatable read uses both long-term read locks and write locks.

Thus, a transaction can read the same row repeatedly, without
interference from insert, update or delete operations by other
transactions. Still, the problem of phantom reads remains unresolved
with this isolation level.

– Serializable is the strongest isolation level and corresponds roughly to
an implementation of 2PL. Now, phantom reads are also avoided.
Note that in practice, the definition of serializability in the context of
isolation levels merely comes down to the absence of concurrency
problems, such as nonrepeatable reads and phantom reads.

48

Isolation Levels

49

Isolation level Lost update Uncommitted

dependency

Inconsistent

analysis

Nonrepeatable

read

Phantom

read

Read uncommitted Yes Yes Yes Yes Yes

Read committed No No Yes Yes Yes

Repeatable read No No No No Yes

Serializable No No No No No

Lock Granularity

• Database object for locking can be a tuple, a column, a
table, a tablespace, a disk block, etc.

• Trade-off between locking overhead and transaction
throughput

• Many DBMSs provide the option to have the optimal
granularity level determined by the database system

• Multiple Granularity Locking (MGL) Protocol ensures that
the respective transactions that acquired locks on
database objects that are interrelated hierarchically
cannot conflict with one another

50

Lock Granularity

• MGL protocol introduces additional locks

– intention shared lock (is-lock): only conflicts with x-
locks

– intention exclusive lock (ix-lock): conflicts with both x-
locks and s-locks

– shared and intention exclusive lock (six-lock): conflicts
with all other lock types, except for an is-lock

51

Lock Granularity

52

 Type of lock(s) currently held on object

 unlocked is-lock ix-lock s-lock six-lock x-lock

 unlocked - yes yes yes yes yes
Type of is-lock yes yes yes yes yes no
lock ix-lock yes yes yes no no no
requested s-lock yes yes no yes no no
 six-lock yes yes no no no no
 x-lock yes no no no no no

Lock Granularity

• Before a lock on object x can be granted, an
intention lock is placed on all coarser grained
objects encompassing x

– E.g., if a transaction requests an s-lock (x-lock) on a
particular tuple, an is-lock (ix-lock) will be placed on
the corresponding tablespace, table and disk block

53

Lock Granularity
• According to MGL, transaction Ti can lock an object that is

part of a hierarchical structure, if :
1. all compatibilities in the compatibility matrix are respected

2. initial lock should be placed on the root of the hierarchy

3. before Ti can acquire an s-lock or an is-lock on an object x, it should
acquire an is-lock or an ix-lock on the parent of x

4. before Ti can acquire an x-lock, six-lock or an ix-lock on an object x,
it should acquire an ix-lock or a six-lock on the parent of x

5. Ti can only acquire additional locks if it hasn’t released any locks yet

6. Before Ti can release a lock on x, it should have released all locks on
all children of x

• In the MGL-Protocol, locks are acquired top-down, but
released bottom-up

54

ACID Properties of Transactions

• ACID stands for Atomicity, Consistency, Isolation and Durability

• Atomicity guarantees that multiple database operations that alter
the database state can be treated as one indivisible unit of work
– recovery manager can induce rollbacks where necessary, by means of UNDO

operations

• Consistency refers to the fact that a transaction, if executed in
isolation, renders the database from one consistent state into
another consistent state
– developer is primary responsible

– also an overarching responsibility of the DBMS’s transaction management
system

55

ACID Properties of Transactions

• Isolation denotes that, in situations where multiple
transactions are executed concurrently, the outcome
should be the same as if every transaction were executed
in isolation

– responsibility of the concurrency control mechanisms of the
DBMS, as coordinated by the scheduler

• Durability refers to the fact that the effects of a
committed transaction should always be persisted into
the database

– Responsibility of recovery manager (e.g. by REDO operations or
data redundancy)

56

Conclusions

• Transactions, Recovery and Concurrency Control

• Transactions and Transaction Management

• Recovery

• Concurrency Control

• The ACID Properties of Transactions

57

More information?

www.pdbmbook.com 58

http://www.pdbmbook.com/

